Continuing: The Modal Logical Interpretation and "Equivalent Descriptions”
In 1976, when I delivered the John Locke Lectures at Oxford, I often spent time with Peter Strawson, and one day at lunch he made a remark I have never been able to forget. He said, "Surely half the pleasure of life is sardonic comment on the passing show". This blog is devoted to comments, not all of them sardonic, on the passing philosophical show.
Hilary Putnam
Although Rudolf Carnap introduced the notion of the
idea of rational reconstruction in his great work on epistemology[1],
for our purposed it can be better illustrated with the story of “imaginary”
numbers. As Menachem Fisch has described, British algebraist were tormented for
nearly a century by the question of the “reality” of what we now call the
“complex numbers”[2].
Yet, in the end, even introductory textbooks in analysis often tell us that we
can stipulate that a complex number is simply an ordered pair of members of R, the field of real numbers. And real numbers can be
identified with Dedekind cuts on the field Q of rational numbers, and rationals themselves can be identified with
ordered pairs of members of Z, the ring
of the positive and negative integers together with zero, or rather with
equivalence classes of such ordered pairs.[3] And what
are the “integers" of which Z is
composed? We can stipulate, for example, that they are ordered pairs consisting
of a natural number and one of three objects (say, the null set Ø, its
singleton {Ø}, , and zero), and multiplication and addition can be defined in
accordance with the rules that the product of two numbers of unlike sign (i.e.
of a positive number and a negative number) is negative, and the product of two
numbers of like sign is positive (e.g., <Ø,2> .<{Ø},3> =
<{Ø},6>). And what are the natural numbers? Well,
von Neumann taught us that we can stipulate
that they are Ø, {Ø}, {Ø,{Ø},{Ø, {Ø}},…[4] And just
as we stipulate definitions for multiplication and addition of members of Z (i.e. for addition and multiplication of the
ordered pairs with which they were identified) so that the usual rules for
multiplication and addition of “arbitrary integers” hold, so stipulate
definitions for addition and multiplication of complex numbers (i.e. for
addition and multiplication of the ordered pairs with which they were
identified) so that the usual rules for the multiplication and addition of
“complex numbers” hold. Of course, it is necessary to prove that all these
stipulations are consistent, and that the distributive, commutative,
associative, etc., laws are all forthcoming, but that is straightforward
mathematical work. And voila! a
century of worry by some of the greatest algebraists in the world over the
“reality” of, e.g., the square root of minus one is passé. i =df
<0,1>, 1(the complex number)=df<1,0> [the ordered pair of two real
numbers], and “i . i = -1”
becomes “<0,1> . <0,1> =
<-1,0>” — and we define
‘multiplication’ of these particular ordered pairs so that this follows
immediately from the definition. I repeat: an ontological worry about the
“existence” of the complex numbers (and particularly about the existence of
such a strange thing as a “square root of minus one”) is replaced by a
mathematical problem—and not that difficult a one—of establishing the
consistency and the logical consequences of a set of stipulations.
Of course, these stipulations have the strange
consequence that there are now five
“ones”: one the “natural number” (e.g., {Ø} if we adopt von Neumann’s system);
one the member of “the ring of integers” Z;
one the rational number (the equivalence class to which 1/1, 2/2, ….and
-1/-1, -2/-2,… all belong); one the real number (the Dedekind cut whose
left member A is the set of rational numbers less that the “one” of Z); and one the complex number! And what do
mathematicians do about that? Why they simply ignore it!
Note that Benacerraf’s problem could have been raised here, but wasn’t. One could have said that these definitions have many alternatives which
would work just as well (which is of course true), so how can it be that any
one of them is “really right”? What the complex numbers really are has not been
answered. But no one supposed, after the century of torment that Fisch
describes so well, that there was such a thing as “what the complex numbers
really are”. Dedekind did suppose that there was such a thing as what the
integers really are, namely “a free creation of the human mind”[5] and
Kronecker famously said that “God made the natural numbers. Everything else is
the work of man”, but basically there was no problem.. But once the idea of
treating complex numbers as appropriate logical constructions as taken
hold—together with the idea that this could be done in different ways—and once
Whitehead and Russell had used the same technique to build up, successively,
the ring Z, the field Q, the field R,
and the field of complex numbers C,
starting with their own construction of the natural numbers (of each type from
the second up) as sets of sets, nothing but sets was left as a basis[6].
Reference to the natural numbers too dissolves into reference to any infinite
sequence of sets you choose. But why did Benacerraf worry about that fact, whereas
Quine, for example, did not?
Perhaps for the simple reason that Quine, who felt
forced, as a self-described reluctant Platonist[7] to
simply “acquiesce” in the existence of sets, was simultaneously (if strangely)
a complete skeptic about reference, and thus could never take seriously the
problem of how we can refer to sets
if sets are causally inert entities. In contrast, Benacerraf was a realist
about reference. This is what Wagner refers to when he writes, “but
Benacerraf's route would appear to turn on very delicate, tendentious
formulations regarding causation and its role in justification.” While this may
be right as a description of the paper to which Wagner refers, I suspect that
there was much more behind Benacceraf’s raising the problem of reference to
mathematical entities in the way he did. I will come back to this suspicion of
mine in a moment. But right now I want to note the following: if, for the time being, we are willing
to take reference to sets for granted, then the example of what has become the
standard way of introducing the natural numbers (e.g., von Neumann), the ring
of integers Z, the rationals Q, the
reals R, and the complex numbers C, shows how a rational reconstruction can “defuse” a
metaphysical problem, not by showing
that there is one right way to think about the issue, but by showing a number
of ways we could have decided to think and talk that would work equally well. And this applies not only to ontological
issues, although such are our concern here, but to rational reconstruction in
general; it is not important that the theory of truth can be formalized a là
Tarksi or a là Kripke[8]; what is
important is that our concept of truth can
be rendered non-contradictory.
Bringing this back to Wagner: one could have asked
the mathematicians who decided to “identify” complex numbers with ordered pairs
of reals, “Are you making the semantic
claim that, e.g., “3+5i” means <3,5>? What possible
semantic theory can support that? Why don’t you say that the square root of
minus one is a fiction, and we can
now live without it? One could have asked Frege, are you saying that, for
example, “two” means the property of
being an extension (i.e., a set) that can be put in one to one correspondence
with the integers zero, one? What possible semantic theory can support that?
Why don’t you say that arithmetic is a fiction, and we can now live without
one, two, three,….etc.? One could have asked Tarski, aren’t you saying that the
idea that there is such a thing as “truth” was a fiction and we can now live without it? In sum, that a concept
needs to be replaced by a less problematic one, and that this can be done in
more than one way, does not mean that the original concept was a fiction. I am not an eliminationist with
respect to arithmetic, and I am not a semantic-modalist either; I am proposing
a rational reconstruction.
But, granted that some rational reconstruction is
called for here (and a great deal of it has taken place in mathematics itself
since the nineteenth century), why can’t we stop with Quine? Why not just take
sets as basic, and accept it that the work I described above of providing
satisfactory definitions of Z, Q, R, and C has done the “housecleaning” work that was sorely
needed? The answer is that a rational reconstruction is meant to defuse a
paradox. Defining a problematic concept in terms of equally problematic concepts isn’t rational reconstruction. The
work of rational reconstruction done by the 19th century
mathematicians and their 20th century successors was not designed to
resolve Benacerraf’s problem. It put the theory of real and complex variables
on a firm footing, and that was a great achievement. But that is not our task
here.
I said above that “I suspect that there was much
more behind Benacceraf’s raising the problem of reference to mathematical
entities in the way he did”. What I have in mind is this: Benacerraf is a Frege
scholar, and he knows that the notion of “set” was quite unclear as late as the
beginning of the twentieth century. I don’t have in mind simply the Russell
paradox; I have in mind that the question of whether sets are simply the
extensions of (possible) predicates haunted the whole late-nineteenth
early-twentieth century discussion. Today that idea has been rejected (in part
because possible predicates, or “properties” seems more problematic than sets,
and in part because another notion, the so called notion of a “random” set, or
an “arbitrary” collection” has come to seem more suitable for mathematics). But
if the natural numbers seemed to be “the work of God”[9], set
theory seems too recent (and two recently problematic) an invention to have
such a sanctified metaphysical status. And aside from the fact that “set” is
somewhat of a neologism, the fact is that sets too can be identified with other
mathematical entities; in fact functions would
seem to be a natural choice. Should we just say that here too there are simply
“alternative rational reconstructions”? It is true that Benacerraf himself only
speaks of the problem of the arbitrariness involved in identifying numbers with
the members of any particular omega-sequence; I hope he will not mind if, when
his problem is extended to all mathematical entities, as illustrated by the
fact that sets themselves can be identified with functions and vice versa, I
henceforth speak of Benacerraf’s Paradox.
If, as I believe, Benacerraf’s Paradox shows
that the notion of sets as objects
and arbitrary functions as objects
are less than fully clear; if we don’t, in fact, know what it means to be a “Platonist about sets
or functions” (especially if, as Wagner explicitly does, we reject the idea of
equivalent descriptions aka “conceptual relativity”!), how can showing that one
could take either as basic and treat
the other as a construction help? Granted, that I could think of functions as
“real” and sets as different sorts of functions (and say, truly, that this can
be done in more than one way, as far as mathematics is concerned), and granted
that I could think of sets as “real” and functions as different sorts of sets (and
say, truly, that this can be done in more than one way, as far as mathematics
is concerned), how can that satisfy my desire to be clear about what I am doing
when I do one or the other? Quine tells me to be a “sectarian”, and choose one
and reject the other, but perhaps change my choice from time to time for some
sort of enlightenment[10] and
Wittgensteinians will say that my worry is “metaphysical”—but of course it is!
What I am seeking is the right
metaphysics.
[1] Rudolf Carnap, Logische
Aufbau der Welt (Berlin-Schlachtensee: Weltkreis Verlag, 1928), 138 ff.
Carnap wrote “rationale Nachkonstruktion”; in the English translation, The Logical Structure of the World
(Berkeley: University of California Press, 1967), p. 220, this is translated as
“rational reconstruction”. “Rational
reconstruction” was also used by Hans Reichenbach in Experience and Prediction (Chicago: University of Chicago Press,
1938), who attributed the term to Carnap (footnote 1, p. 5).
[2] Menachem Fisch, "The
Emergency Which has Arrived: The Problematic History of 19th Century British
Algebra - A Programmatic Outline", The British Journal for the History
of Science, 27: 247-276, 1994.
[3] One chooses equivalence classes and not simply
ordered pairs consisting of the numerator and the denominator so that 3/7 and
6/14 will turn out to be the same rational number.
[4] I.e., 0 = Ø,
1 = {0}, 2 = {0,1}, 3 = {0,1,2} … each natural number, starting with zero, is
the set of all smaller natural numbers!
[5] REF
http://www.math.uwaterloo.ca/~snburris/htdocs/scav/dedek/dedek.html
[6] I am describing the theory of types as Ramsey
simplified it here, not as Whitehead and Russell presented it.
[7] In
Theories and Things (Cambridge, MA:
Harvard University Press, 1990), p.
100, Quine famously described himself as a reluctant Platonist (“I have felt
that if I must come to terms with Platonism, the least I can do is keep it
extensional”).
[8] Saul Kripke, "Outline of a Theory of
Truth", Journal of Philosophy 72
(1975): 690–716.
[9]
Leopold Kronecker famously said that “Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk”. Quoted in Weber, H. "Leopold
Kronecker", Mathematische Annalen (Springer Berlin / Heidelberg) 43
(1893): 1–25.
[10] Quine wrote“[The sectarian] is as free as the
ecumenist to oscillate between [empirically equivalent but incompatible]
theories for the sake of added perspective (sic)
from which to triangulate on problems. In his sectarian way, he does deem the
one the true and the alien terms in the other as meaningless, but only so long
as he is entertaining the one theory rather than the other. He can readily
shift the shoe to the other foot.” Pursuit
of Truth (Cambridge, MA: Harvard University Press: 1990), 100.
Very nice.
ReplyDeleteThe post is really very nice. I would suggest you to write more text about it in order to grab audience. Thanks for sharing this post with us.
ReplyDeletenice post
ReplyDeleteKhasiat Daun Pepaya
This comment has been removed by the author.
ReplyDeleteThank for your sharing good blog comment.
ReplyDeleteหนังตลก
Le scarpe replica alexander mcqueen sono molto belle e molto temperanti.alexander mcqueen scarpe outlet Mi piace molto questa scarpa mcqueen replica. Il servizio di negozio è molto buono, la qualità delle scarpe è molto buona e il prezzo è molto buono.donna alexander mcqueen scarpe italy Penso di essere molto economico, di buona qualità ed economico
ReplyDeleteThank you.
ReplyDeleteExcellent post. This was quite informative in terms of what I was looking for. Thank you for this post, and please continue to share with us.
ReplyDelete무료야설
대딸방
마사지블루
마사지
바카라사이트
바카라사이트
ReplyDeleteOnly aspire to mention ones content can be as incredible. This clarity with your post is superb and that i may think you’re a guru for this issue. High-quality along with your concur permit me to to seize your current give to keep modified by using approaching blog post. Thanks a lot hundreds of along with you should go on the pleasurable get the job done.
토토사이트
ReplyDeleteI went over this internet site and I think you have a lot of great info , saved to favorites
kralbet
ReplyDeletebetpark
tipobet
slot siteleri
kibris bahis siteleri
poker siteleri
bonus veren siteler
mobil ödeme bahis
betmatik
HFBMC